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Abstract 

Results from probabilistic theory for the single- 
wavelength anomalous-scattering (SAS) Friedel pair, 
two-phase structure invariants, ~n = ~°H + 9 - s ,  are 
used to show that the SAS three-phase structure 
invariants, ~Prm = 9n + 9K + 9-n-~,  tend to positive 
values that are easily estimated. Appropriate averages 
of the estimates provide SAS perturbation corrections in 
the form of positive origin shifts for the probability 
distribution of apHK values and for the tangent formula. 
The theoretical probabilistic results are verified by 
empirical statistical analyses of model-calculated phases 
and experimentally measured structure-factor magni- 
tudes for a small-molecule and a protein crystal 
structure. 

1. Introduction 

At X-ray wavelengths near an absorption edge for some 
subset of the atoms of the unit cell, anomalous 
dispersion due to damped resonant scattering breaks 
Friedel's law and a Friedel pair of reflections H a n d - H  
with normalized structure factors, 

Eu = IEnl exp(iq~) and E-n  -- IE_HI exp(i~o_n), 

will have, in general, 

IE-nl :/: IEHI and ~o_ H ~ - 9 9  u. 

Probabilistic theory (Hauptman, 1982) provides the 
formulae summarized in Appendix A for calculating 
estimates -~n  for the single-wavelength anomalous- 
scattering (SAS) two-phase structure invariants, 

~Pn -- ~ + ~O-n ~ -~rl > 0. (1) 

To calculate the probabilistic estimate -~n ,  only the 
atomic composition of the unit-cell and the f '(2) and 
f"(2) values need be known. There is no need to know 
atomic positions, not even those of the strongest 
anomalous scatterers, and the estimate -~n  does not 
depend on the structure-factor magnitudes IEnl and 
IE-nl. The reliability of the estimate does, however, 
depend on the magnitudes since var0Pn) increases with 
decreasing IEnE_nl (Hauptman, 1982; Guo, Blessing 
& Hauptman, 1991). Statistical analyses have confirmed 

that the probabilistic estimates -~n  > 0 are reliable for 
Friedel pairs with IE n E _ u l  1/2 > 1 and the estimates are 
more reliable the larger the IEI values and the smaller 
the number of atoms per unit cell (Guo & Hauptman, 
1989; Guo, 1990; Guo, Blessing & Hauptman, 1991). 

2. A perturbation approximation for SAS two-phase 
invariantst 

Under SAS conditions, a Friedel pair of phases can be 
expressed as 

~a = ~ + zx~  and ~0_H = ~0OH + Za~0_H, (2) 

where ~ i  and q~° n are the normal-scattering phases and 
A g .  and A~o_ n are anomalous-scattering phase 
advances. Since Friedel's law holds for the normal 
scattering, ~O°n = - ~ ,  and (1) and (2) give 

Cn = za~ + a~_n, (3) 
so that the average phase advance can be estimated from 

a n  = (za~a + za~O_n)12 = ¢n12 ~ - ~ . 1 2  > O. (4) 
In many cases, anomalous scattering is significant for 

only a few atoms of the unit cell and negligible for all 
the other atoms. With such cases in mind, we think of 
the phase effects of anomalous scattering as perturba- 
tions of the normal scattering phases and we take the 
average phase advance A n t o b e  an acceptable 
approximation of the perturbations for both the H and 
- H  reflections. Thus, (2) becomes 

q~a ~ ~ + An and 9-n  ~ -~P~ + An- (5) 

Since the perturbation estimate A n ~ - - ~ n / 2  from 
(4) is a probabilistic result, it will be a poor estimate for 
some Friedel pairs; indeed, real structures generate 
some two-phase invariants for which, contrary to (1), 
the actual phases give ~?n < 0. For statistically large 
'sets of invariants, however, the averaged estimates 
(~n) ~ (-~n) > 0 are reliably accurate, as we have 
shown in an application using the perturbation 
approximation to estimate two-phase invariants in the 

1"Here and hereafter, we shorten the term 'structure invariant' to 
simply 'invariant'. 
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two-wavelength anomalous-scattering case (Guo, 
Blessing & Hauptman, 1994). 

3. Extension to SAS three-phase invariants* 

Since under SAS conditions ~0_ n # --q~H, each triple of 
reflections for which H + K + L = 0 represents a 
family of eight SAS three-phase invariants: 

¢0 - 9H +~pK + ~  ~ ¢0 + A0, 

1/)'1 ~ - - q g - n  -31- (ilK "~- qgL ~ 1/)' 0 "~- A1 ,  

1/)': - 9H -- fP-K +~0L ~ ¢0 + A:, 

1/)'3 -- fan +~0K --fP-L ~ ¢ 0 +  A3 ' 
(6) 

1/)'-0 --~ (P-H -~- ~ - K  -~- ~ - L  ~ --1/)' 0. + AO, 

¢ - I  ~- --q)H -~- ~ - K  -~- (fl-L ~ --1/)' 0 -l" A 1 , 

1/)'-2 ~ ~O-H --  t/gK "~- ~O-L ~ --1/3.0 -~- A2 ,  

1/)'-3 - 9 -n  + 9-K -- 9L "~ --1/)' 0 + A3, 

where the rightmost expressions are based on (5). In 
each of these expressions, 

1/).0 _ q~ + 90 + q~o (7) 

is the parent normal-scattering invariant and 

A 0 --- Z~ H -~- A K -a t- A L ,  

A 1 = - - A  H +  A K-~- AL,  
(8) 

A 2 = A H -  A K-4- A L ,  

A 3 = A H-'[- A K -  A L 

represent the SAS phase-invariant perturbations with 

A H ---~ ((/9 H -[- ~0_H)/2 ~ --~H/2, 

A K = (q9 K -+- qg_K)/2 ~ --~K/2, (9)  

A L = (tpL -q- ~0_L)/2  ~,~ - - ~ L / 2  

according to (3). 
In (6), the normal-scattering components have the 

same magnitude I¢°l in all eight invariants because 
Friedel's law holds for the normal scattering and 
~O°n = - 9 ~ .  In (8), the eight anomalous-scattering 
phase perturbations reduce to four because A_ n = A n 
by the hypothesis of (5). 

The perturbation estimates given by (8) and (9) have 
only probabilistic validity, and may be poor estimates 
for some individual triples. But, for a statistically large 
set of triples, the averaged estimates are expected to be 

* In this and subsequent sections, we use a superscript zero to denote 
quantities associated with the normal scattering, e.g. phases ~o ° and 
phase invariants ~V °, and we use a subscript zero to denote quantities 
associated with the first of  the eight types of SAS three-phase invariant 
defined by (6), viz the invariant % and the phase shift .4 o. Please note 
especially the distinction between ~/P, the parent normal-scattering 
invariant, and % ,  the first of  the eight types of SAS invariant. 

accurate. On averagingt over a large set of triples, the 
normal-scattering components give ( ¢ o ) =  (_1/).0)= 0 
and the SAS triples averages are 

(1/).o) = (1/).-o) = (Zao) ~ - ( ~ a  + ~K + ~L)/2,  

(¢1) -:" ( ¢ - 1 )  = (A1) ~' --(--~:H "at- ~K "Jr- ~L)/2 ,  

(¢2) = ( ¢ - 2 )  = (A2) ~ - - (~a - ~K + ~L)/2,  

(1/)'3) --  ( ¢ - 3 )  = (/13) ~ --(~:n + ~K -- ~L)/2" 

(10) 

Since -~n  > 0 for all H, all eight types of SAS three- 
phase invariants tend to be positive, the tendency being 
strongest for the ¢0 and ¢-0 types. To our knowledge, 
the positive tendency of SAS three-phase invariants has 
not been noticed before. 

4. Empirical distributions of SAS three-phase 
invariants 

To investigate the probability distribution for SAS 
three-phase invariants and verify our perturbation 
estimates of its mean, we compiled distribution 
statistics for a small-molecule and a protein crystal 
structure. Our small-molecule test case was cocaine 
methiodide [P212121, a = 7.014, b = 7.461, 
c = 3 7 . 7 1 A ,  Z = 4 ,  C18H34NO4I (Shen, Ruble & 
Hite, 1975)] and our protein test case was the single- 
site K2Pt(NO2) 4 derivative of macromomycin [P21, 
a = 3 6 . 2 9 ,  b = 3 5 . 5 4 ,  c = 3 8 . 0 4 A ,  /~=99.59 °, 
Z = 2, C461H735NI270160S4 • 99.5H20(located ) • 3C 6- 
H1402"Cao.6, Pcalc =0-90rag mm-3 for the located 
atoms, R =0.16;  15436 uniciue data measured with 
Cu Ka X-rays for the native protein to 1.5 A resolu- 
tion; 3347 Friedel pairs measured with Cu Kot for the 
platinum derivative to 2.5,~ resolution (Van Roey & 
Beerman, 1989) (Brookhaven Protein Data Bank 
access code 2MCM)]. 

From the published atomic position parameters rj 
and mean-square displacement parameters b/ 
[~l(k _< l = 1, 2, 3) = 2zr2a~a*lUfl for the small mole- 
cule and ~ l =  a,ka,lBisod/4 for the protein], normal- 
ized structure-factor magnitudes and phases for 
normal scattering and for MoKct, CuKct and CrKc~ 
anomalous scattering were calculated according to 

E n=Fn//  e H , (11) 
j= l  

where 

N 
Fn = ~ Pj[fja[ exp(Sja + 2m'IIrrj - HTbjH), (12) 

j= l  

eH >_ 1 is the degeneracy of the reciprocal-lattice point 
H, and 0 <pj _< 1 allows for partial atomic site 

"~ Sums or differences of phases ~o or phase invariants ~z were 
computed using circular (modulo 2Jr) remainder arithmetic on values 
expressed in the interval -~r < ~0 _< +Jr or -z r  < ~ _< +Jr. 
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occupation in disordered structures. Structure factors 
were calculated to d~i . = 0.8 A resolution for cocaine 
methiodide, and for the 8 >_ d _> 1.5 A resolution range 
for macromomyc~n. Pt. The very low resolution reflec- 
tions with d > 8 A were excluded from the protein data 
analysis because they would have been strongly affected 
by the undetermined disordered part of the interstitial 
solvent structure (--,200 H20). 

The distributions of three-phase invariants generated 
from the calculated phase sets are given as data- 
frequency histograms in Tables 1 and 2 and Fig. 1. 
These empirical distributions approximate the mar- 
ginal probability distributions for the three-phase 
invariants, i.e. the magnitude-integrated forms of the 
joint probability distributions for the three-phase 
invariants and their three associated structure-factor 
magnitudes, 
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Fig. 1. Histogram plots of the distributions of SAS three-phase 

invariants for (a) cocaine methiodide (Table 1) and (b) macro- 
momycin. Pt (Table 2). The MoKot anomalous-scattering data are 
not plotted because they almost superimpose the normal-scattering 
data and the smooth curves are eye-estimated not numerically fitted. 
Note that the vertical scale for the protein structure is magnified to 
about three times that of the small-molecule structure. 

Table 1. Distribution of  cocaine methiodide normal and 
SAS three-phase invariants ~o = ~ + ~ + qLrl-K 

with min(IEnl, IEKI, IE_n-KI) > 1 and d > 0.8A 

Number of invariants per interval 
% i n ~ r v M  (°) Normal AnomMousscattering 

~min < ~ 5 ~ m =  " sc~tefing MoKa CuKa  CrKa  

-180  -170  100 143 38 31 
-170  - 1 6 0  90 105 66 15 
-160  - 1 5 0  44 63 102 25 
- 1 5 0  - 1 4 0  43 42 96 35 
- 1 4 0  -130  56 40 35 61 
- 1 3 0  - 1 2 0  45 55 39 77 
-120  - 1 1 0  77 42 28 51 
-110  -100  152 79 24 32 
- 1 0 0  - 9 0  357 180 34 24 

- 9 0  - 8 0  791 354 -48 23 
- 8 0  - 7 0  1296 767 106 11 
- 7 0  - 6 0  1926 1251 203 21 
- 6 0  - 5 0  2535 1765 437 36 
- 5 0  - 4 0  3413 2421 712 70 
- 4 0  - 3 0  5835 3435 1157 123 
- 3 0  - 2 0  11631 5734 1533 231 
- 2 0  - 1 0  22227 11326 2293 380 
- 1 0  0 35557 21146 3413 595 

0 10 33861 34569 6357 816 
10 20 21000 31873 12720 1269 
20 30 11580 20445 23906 1878 
30 40 5884 17391 32756 3249 
40 50 3453 5755 26913 6028 
50 60 2495 3298 16554 10839 
60 70 1906 2311 8627 17562 
70 80 1297 1738 3997 22535 
80 90 726 1114 2308 21661 
90 100 327 619 1756 15748 

100 110 157 285 1230 9311 
110 120 79 127 734 4641 
120 130 47 80 318 2203 
130 140 44 47 123 1259 
140 150 38 33 56 788 
150 160 39 42 38 444 
160 170 59 44 24 199 
170 180 122 68 26 70 

Total phases 892 879 848 787 
Total ~ l e ~  169277 162787 148807 122341 
((@o -(%))2)1/2 24.4 24.4 23.7 25.3 
((~0 -- ~01)2) 1/2 24.4 24.4 23.3 23.8 
(%) - 0 . 2  9.5 36.1 76.8 
--(~H + ~K + ~-H-K)/2 0.0 9.5 35.2 74.2 

oo oo oo 

PM(~HK) = f dlEHI f dlEKI f dlE_H_KI 
o o o 

× PJ(~.K, IE.I, IEKI, IE-.-KI), (13) 

where 

1/fnK --" (PH + (PK + ~ - H - K "  (14) 

In compiling the empirical distributions, we omitted 
reflections with ]El <_ 1.0 for the small molecule and 
]El _< 1.5 for the protein. Our results therefore repre- 
sent truncated approximations to the infinite integration 
ranges of (13). 

The empirical results presented in Tables 1 and 2 and 
Figs. 1 through 4 show quite clearly that: (i) the 
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Table 2. Distribution of macromomycin. Pt normal and 
SAS three-phase invariants ~Po = 9 .  + ~0K "q- ~0-H-K 
with min(IEn[, IEK[, IE-n-KI) > 1.5 and 8 > d > 1.5A 

Number of invadants per interval 
%in te rva l ( ° )  Normal Anomalous scattering ~. < ~ ~ m =  scattering M o K a  CuKa CrKa  

- 1 8 0  -170  537 449 521 443 
- 1 7 0  - 1 6 0  453 346 384 333 
-160  - 1 5 0  481 337 398 297 
-150  - 1 4 0  545 396 429 364 
- 1 4 0  - 1 3 0  595 430 484 366 
- 1 3 0  - 1 2 0  634 452 526 414 
- 1 2 0  - 1 1 0  828 534 590 432 
- 1 1 0  - 1 0 0  911 639 704 561 
- 1 0 0  - 9 0  999 647 721 576 

- 9 0  - 8 0  1276 820 883 621 
- 8 0  - 7 0  1470 996 1064 807 
- 7 0  - 6 0  1694 1110 1130 878 
- 6 0  - 5 0  1943 1233 1299 1005 
- 5 0  - 4 0  2152 1473 1507 1169 
- 4 0  - 3 0  2433 1660 1656 1290 
- 3 0  - 2 0  2721 J837 1851 1478 
- 2 0  - 1 0  2729 2048 2031 1658 
- 1 0  0 2913 2064 2038 1735 

0 10 3259 2538 2518 1922 
10 20 2853 2180 2159 2076 
20 30 2744 2074 2209 1800 
30 40 2312 2013 2011 1745 
40 50 2241 1642 1652 1587 
50 60 1929 1576 1567 1397 
60 70 1689 1410 1398 1249 
70 80 1393 1096 1138 1083 
80 90 1218 966 1065 909 
90 100 1015 782 820 754 

100 110 869 677 761 595 
110 120 752 608 654 553 
120 130 682 528 567 494 
130 140 528 463 514 447 
140 150 536 391 448 381 
150 160 508 408 460 358 
160 170 473 384 420 369 
170 180 460 357 419 326 

Total phases 1324 1203 1219 1147 
Total t r i p ~  50775 37564 38806 32472 
((~0 -- (~0))2) 1/2 73.5 74.4 76.2 75.5 
((% A0)211/2 73.5 73.9 76.2 75.5 
(%) - 0 . 8  4.3 3.6 7.3 
--(~a + ~K + ~_n_K)/2 0.0 4.9 4.8 9.1 

distributions of the ~0 are unimodal and symmetric and 
their means ($01 are shifted from zero for the normal 
scattering distributions to positive values for the SAS 
distributions; (ii) the positive mean shifts are larger the 
stronger the SAS signal, ranging from a few degrees 
for the protein to more than 70 ° for the small molecule; 
(iii) the breadth of the distributions, as measured by the 
standard deviations ( ( ~ 0 -  (1/)'0112> 1/2' are several times 
larger for the protein structure (N~_ 1500 non-hydrogen 
protein atoms per unit cell) than for the small-molecule 
structure (N_~ 100 non-hydrogen atoms per unit cell) 
but the standard deviations (Tables 1 and 2) seem to be 
independent of the strength of the SAS signal; (iv) the 
perturbation estimates (~o) = ( A 0 )  = - - (~H -~- ~K 

+~n+K)/2 > 0 for the mean shifts are highly reliable 
(Fig. 2); (v) the mean shifts (1/ti), i = 4-0, 4-1, 4-2, 4-3, 
for the eight types of SAS invariant defined by (6) are 
accurately estimated (Fig. 3) by the perturbation 
formulae (10); (vi) among the eight invariant types, 
~0 and ~-0 are the most important because they 
express the anomalous signal about three times more 
strongly (Figs. 3 and 4) than the other types. 

A close examination of Table 2 and Fig. 1 (b) for the 
protein shows that the empirical P(~o) data points foi" 
the -180  < ~P0 < -170° and 0 < ~0 < 10° histogram 
intervals lie slightly but noticeably above the smooth 
curve through the neighbouring points. The apparent 
outlier points represent local averages (~P0) that are 
strongly affected by the zonal hOl data, for which the 
normal scattering phases are restricted to values of 
90 = 0 or 180 °. Although the positive shifts of the 
corresponding (~0) values are small, they are clearly 
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Fig. 2. Correlation plots of the statistical averages (%) versus the 
probabilistic estimates - (~n  + ~g + ~-a-K) /2  for the three-phase 
invariants for normal scattering and MoKa,  CuKa  and CrKt~ 
anomalous scattering for (a) cocaine methiodide and (b) 
macromomycin-Pt. Note that the scale for the protein structures 
is magnified to about ten times that of the small-molecule structure. 
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discernible and they clearly confirm the positive 
tendency of the SAS three-phase invariants. The 
restricted-phase outlier effect is less apparent in 
Table 1 and Fig. l(a) for the small molecule because 
the distributions are much more sharply peaked about 
their means, and their means have much larger 
positive shifts. 

Fig. 4 illustrates how the average SAS effect can be 
viewed as a degeneracy-splitting perturbation: Under 
normal scattering conditions, the eight types of three- 
phase invariants (6) are phase-degenerate with average 
phase zero. But under anomalous-scattering conditions, 
the SAS perturbation produces positive shifts of the 
phase invariants and splits the eightfold degenerate set 
of invariants into four twofold degenerate sets. The ~ 
pair is phase-shifted about three times more than the 
aP+l, ~±2 and ~P+3 pairs, which, though phase-shifted, 
remain quasi-degenerate. 

5. A SAS perturbed tangent formula and an 
application 

The empirical distribution statistics summarized in 
Fig. 1 indicate that the functional form of the marginal 
probability distribution PM(aPHK) for SAS perturbed 
three-phase invariants must be closely similar to the 
form for the corresponding normal scattering invar- 
iants. This suggests that theunderlying joint probability 
distributions PJ(~HK, IEHI, IEKI, IE-H-KI) have similar 
form, which in turn implies similar form for the 
conditional distributions PC(~HKllEHI, IEKI, IE-H-KI) 
given fixed values for the three [El magnitudes. 
Appendix B summarizes the SAS perturbed conditional 
probability formulae and Appendix C shows the 
derivation of the SAS perturbed tangent formula, 

E AHK sin((Ao)n -- ~0K - 9 - H - K )  
= K (15) 

tan 9H ~ AH K COS((A0) H __ (/9]K __ ~0-H-K ) , 
K 

where 

(A0)H : --(~H 7t- ~K -[- ~ - H - K ) H / 2  > 0 (16) 

is the averaged SAS perturbation for the subset of three- 
phase invariants with fixed H and a range of different 
K. The averaged perturbation (za0) a represents the 
positi, ce shift of the mode and mean of the ~ 
probability distributions from ~P+o = 0 in the normal 
scattering case to ap~ > 0 in the SAS case. For 
sufficiently large subsets of fixed H triples, the averaged 
value (za0) a is expected to be reliable even though some 
of the probabilistic estimates of A o for individual triples 
might be poor. If anomalous scattering is a very small 
fraction of the total scattering, then (A0) a ~, 0 and (15) 
reduces to the conventional tangent formula. 

We have applied (15) to the problem of resolving the 
twofold ambiguity of phase determination by Harker 

construction for SAS data from a protein structure 
containing a known substructure of anomalously 
scattering heavy atoms. A well illustrated description 
of the SAS application of Harker phase constructions 
(Harker, 1956) has been given by Kartha (1976). For an 
anomalously scattering heavy-atom-containing protein 
PH with a known heavy-atom substructure H, given the 
measured Friedel pairs of magnitudes IFpH,÷HI and 
IFpH,-HI and the calculated phased structure factors 
FH.+H and FH_ n, the Harker construction provides two 
alternative phase estimates, ~PPH.+n or ~P~'H.+n, for the 
-t-H reflection from the PH structure (and two 
corresponding estimates, ~PH,-H or ~O[,H_ n, for the 
- H  reflection). A practical rule of thumb to resolve the 
twofold phase ambiguity has been that the Harker- 
constructed phase ~opH or ~0~H that is closer to the 
corresponding heavy-atom substructure phase ~0 H is 
more often than not the correct choice (Peerdeman & 
Bijvoet, 1956; Sim, 1959). Based on the theoretical 
result (1), it has also been suggested that, since by 
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Fig. 3. Statistical averages (~-~} (solid lines) and average probabilistic 
estimates (Ai) (dotted lines) for the eight types (i = :£-0, -F1, -t-2 and 
+3) of SAS three-phase invariants for (a) cocaine methiodide and 
(b) macromomycin. Pt. Note that the scale for the protein structure 
is magnified to about ten times that of the small-molecule structure. 
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geometric construction the ambiguous Harker phases 
form Friedel-pair two-phase invariants of opposite sign, 
i.e. 

I~ H = ~OpH,+ H -I- ~PH,-II = --(~PH,+. -I- ~PH,-H) = --lPJH, 

(17) 

the phases ~o or ~ that make the two-phase invariants 
or ~ positive are likely to be the better choice (Guo & 
Hauptman, 1987). The calculations described below 
show that the SAS perturbed tangent formula also 
provides a reliable means to resolve the Harker phase 
ambiguities. 

We performed Harker construction calculations for 
macromomycin.Pt using the published Pt parameters 
(x = 0.2051, y = 1/4, z -- 0.5166; Bis o -- 38tk2; 
occupancy=l .0)  and the experimental magnitudes 
IFpH,÷HI and IFeH_HI for the 3347 Friedel pairs 
measured to 2.5 A resolution with CuKot X-rays. The 
experimental IFI magnitudes were normalized to obtain 
IEI magnitudes (Blessing, Guo & Langs, 1996) and the 
experimental Friedel pairs of IFI and IEI magnitudes 
were locally scaled to reduce the effects of systematic 
experimental errors (Matthews & Czerwinski, 1975; 
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Fig. 4. Ph,~-degeneracy splitting diagrams for the average phase 

shift due to SAS perturbations for (a) cocaine methiodide and (b) 
macromomycin-Pt. Note that the vertical scale for the protein 
structure is magnified to about ten times that of the small-molecule 
structure. 

Blessing, 1996). Fig. 5 gives a schematic diagram of the 
Harker constructions. Since the space group is P2 I, 
the choice y(Pt)= 1/4 meant that the FH calculated 
for the heavy-atom substructure had magnitudes 
IFH.÷HI = IFH,-HI and phases restricted to values near 
0 or n', and this in turn meant that the twofold 
ambiguous Harker phases were related by 
~PH,+H -Jr- ~0tpH,+H = ~PH, -H "lt- ~dPH,-H = ~ .  

The Harker construction phasing triangles closed for 
all but 319, i.e. --~10%, of the Friedel pairs. The 3028 
pairs that yielded, closed constructions, which included 
many pairs with small IEI magnitudes, were ranked in 
order of decreasing values of an empirical figure of 
merit that we defined as 

q =  (IEI)I~l (Izal/cr) ((cr)/(IAI)) (18) 

for the acentric general reflections with unrestricted 
phases and 

q = (IEI)I~1 (19) 

for the centric zonal reflections with restricted phases 
and magnitudes IF+H I = IF_HI. The factors of q depend 
on the experimental IFI and IEI magnitudes and the ~p 
and ~ Harker phases and are defined by 

(IEI) = (IE+H[ + IE_HI)/2, (20) 

I~1 = I~0+H -t- ~P-H[ = I~0+H "t- ~0'-al, (21) 

za = IF+HI- IF-HI, (22) 

cr = [o'2(IF+HI) -t- o~(IF_HI)] 1/2. (23) 

The factor (IEI) gives higher q rank to the highly 
structure sensitive Friedel pairs with the larger experi- 
mental IEI values. The factors I~1 gives higher q rank to 

z =  i 

Re" 

Fig. 5. Schematic illustration of the SAS application of the Harker 
construction for macromomycin-Pt. Since the space group is P21 
and y ( P t ) = l / 4 ,  the heavy-atom substructure factors have 
magnitudes IF+HI = IF_.I and phases restricted to values near 0 
or ~. 
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the Friedel pairs with the more widely separated centers 
for their Harker circles, and therefore the more precise 
intersections of the circles, i.e. the Friedel pairs with 
large magnitudes for the heavy-atom vectorial differ- 
ence F H , + n - - ~ _ . .  The factor IAI/cr gives higher q 
rank to the acentric Friedel pairs with the more 
experimentally precise differences between the radii of 
their Harker circles. Since A -  0 for centric Friedel 
pairs, the factor (cr)/(Izal) in (18), where (a) and (Izal) 
are averages over all the acentric Friedel pairs, serves ( o ) 
to place the acentric and centric q values on comparable 
scales. 9O 

In the q-ranked list of Friedel pairs, three different 
sets of arbitrary choices were made to resolve the 80 
Harker phase ambiguities: first, every fifth phase was 
chosen to have ~n > 0 and the remaining four-fifths to 70 
have ~Pn < 0; second, every third phase was chosen to 
have ~p. > 0 and the remaining two-thirds to have 6o 
~p. < 0; and third, every third phase was chosen to have 
~Pn < 0 and the remaining two-thirds to have ~Pn > 0. 5o 
The three phase sets corresponding to the arbitrary 
choices of 20, 33.3 and 66.7% with ~Pri > 0 turned out 4o 
to represent, respectively, 35, 42 and 59% correct 
choices compared with the 'true' phases calculated for 30 
the refined protein structure. The choice of the ~n > 0 
phases for all the Friedel pairs was 76% correct. 

The three arbitrarily chosen phase sets were next 
refined via the SAS perturbed tangent formula (15) 
using 700 704 triples generated from the 3028 Friedel 
pairs, with the H components of the triples representing 
all 3028 pairs but the K and - H - K  components limited ( o ) 
to the top 2000 of the 3028 q-ranked pairs. The tangent 
refinement was used only for the purpose of choosing 9o 
for each next cycle the Harker phase closer to the 
tangent refined phase, and after each refinement cycle 80 
the mean absolute phase error. 

el  "-- (l~Ona~ker - 9truel) 70 

and the root-mean-square phase error 60 

~2 = ((~0Harker --  ~0true) 2) 1/2 50  

were computed. 
Fig. 6(a) illustrates the courses of the three tangent 4o 

refinements of the Harker phase choices. The refine- 
ments converged smoothly and quickly to stable final 30 
phase errors e x = 48.2 and e2 = 69.6 ° and yielded 74% 
correct resolutiom of the Harker phase ambiguities. 
This validated the SAS perturbed tangent formula as a 
means for resolving the ambiguities but, at least in the 
present case, the tangent refinement did not improve 
upon the 76% correct choice of the Harker phases that 
gave ~Pn > 0 for all the Friedel pairs. 

As would be expected, the tangent-refined phase 
values are  less accurate than the tangent-chosen phase 
values from the Harker constructions: with the tangent- 
chosen Harker phases replaced by the tangent-refined 
phases, the phase errors increased to el = 61.2 and 

,5' 2 = 80.2 °. Also, as would be expected, tangent-refined 
ambiguity choices are more reliable, and Harker phase 
errors are smaller, for Friedel pairs with higher q rank: 
Fig. 6(b) illustrates the courses of refinements of the 
ambiguity choices for a smaller set of 1428 Friedel pairs 
selected from the top of the q-ranked list. For this 

Phase Err. 

Random starting positive TPSI 
) 
-- ................ 20.0% 

V'. 33.4% 

~" 66.7 % 
\'.. 

_ V 3028 Reflections 

4 
- 

0 1 2 

I I 

3 4 
(a) 

Phase Err. 

Cycle 

0 

Random starting positive TPSI 

................ 20.0% 

33.3% 

66.7% 

.~ 1428 Reflections 

v 
v.. 

I I I I 

1 2 3 4 Cycle 
(b) 

Fig. 6. Courses of SAS perturbed tangent formula refinements for 
three different sets of arbitrary choices of twofold ambiguous 
Harker construction phases for macromomycin-Pt. The three sets 
of phases corresponded to sets of Fdedel-pair two-phase structure 
invariants ~p, = 9+n + ~0-n for which, respectively, 20, 33.3 and 
66.7% had ~n > 0. (a) All 3028 Friedel pairs that gave closed 
Harker constructions; (b) the top 1428 q-ranked Friedel pairs. Mean 
absolute phase errors are plotted; final root-mean-square phase 
errors are given in the text. 
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smaller set, the Harker phase errors were reduced to 
e 1 = 37.7 and e 2 = 56.6 °, and.78% of the Harker phase 
ambiguities were correctly resolved. 

6. Concluding remarks 

We have shown that SAS three-phase invariants can be 
formulated in terms of a phase perturbation that is easily 
estimated ab initio from the probabilistic theory for 
Friedel-pair two-phase invariants. The SAS perturba- 
tion shifts the mode and mean of the three-phase 
invariant probability distributions from zero for normal 
scattering to positive values for anomalous scattering. 
Except for its positive origin shift, the SAS perturbed 
three-phase invariant distribution has the same form as 
the corresponding normal-scattering distribution, and 
yields an SAS perturbed tangent formula with the form 
of an origin-shifted conventional tangent formula. 

We think that the SAS perturbation treatment offers 
the advantages of a simple formulation and a clear 
physical picture of the SAS phase effect as a positive 
origin shift for the three-phase invariant distribution. 
Before concluding, however, we wish to acknowledge 
that other workers (Fan, Han, Qian & Yao, 1984; Hao 
& Fan, 1988; Kyriakidis & Peschar, 1993; Kyriakidis, 
Peschar & Schenk, 1993) have developed other 
approaches to SAS phasing using phase 'doublets' to 
resolve the Harker-construction ambiguity and/or to 
estimate three-phase invariants. The power of these 
methods has been convincingly demonstrated in the 
recent ab initio redetermination of the structure of the 
selenobiotin binding core of the protein streptavidin via 
a SAS direct-methods procedure (Sha, Liu, Gu, Fan, 
Ke, Yao & Woolfson, 1995). 

We are grateful to Dr Patrick Van Roey for providing 
his macromomycin. Pt diffraction data, and for 
USDHHS PHS NIH grant no. GM46733 for support 
of this research. 

APPENDIX A 
Calculation of the probabilistic estimates for 

Friedel-pair two-phase invariants under 
single-wavelength anomalous-scattering conditions 

The probabilistic estimates --~H for the SAS two-phase 
invariants, 

~rH ~ ~0H -+- qg-H ~" --~H, (24) 

are given by the following formulae from Hauptman 
(1982): 

N 
S n = c~H 1 ~ Ifjnl 2 sin 28in, (26) 

j=l 
N 

CH = O/H 1 E IfjHI 2 cos  28jH, (27) 
j=l 

N 
ct n -- ~ IfjH] 2. (28) 

j=l 

In these formulae, N is the number of atoms in the unit 
cell, and the complex-valued atomic scattering factors, 

fyH = J~°jn + f j  + ~", (29) 

are expressed in polar form as 

with 

and 

f m :  IfjHI exp(iSjH) (30) 

IfjHI -- [Ctj0jH +ff)Z + (~f,)Zll/2 (31) 

8jn = tan-'[fj"/(ffjn +fj')]. (32) 

Since, i n  general, fo, (fo + f , )  and f "  > 0, the 
arguments 8in > 0 correspond to phase advances and 
it follows that 

--~H > 0. (33) 

APPENDIX B 
A perturbation approximation to the conditional 

probability distribution for SAS three-phase 
invariants 

Empirical statistics (Tables 1 and 2 and Fig. 1) indicate 
that the conditional distribution for SAS three-phase 
invariants has the form of an origin-shifted normal 
scattering distribution, i.e. an origin-shifted distribution 
of the von Mises type (Cochran, 1955; Hauptman, 
1976). Accordingly, we write for the SAS invariants 

P(~i hi) = [27rlo(Ai)] -1 exp[Aicos(tl/i- Ai)], (34) 

where the l/-/i with i = +0, 4-1, 4-2 and 4-3 denote the 
eight invariant types defined by (6); the A i > 0 are SAS 
perturbations given by (8) and (9); I 0 is the zero-order 
modified Bessel function of the second kind; and the 
amplitude arguments are 

A±o = 2(cr3/cr32/2)HKIE+HE+KE+H~:KI, 
3/2 

A~x -- 2(a3/~ 2 )HKIE~.E+KE~H~KI, 

A ~  = 2(cr3/cr3/2)HKIE+HE+KE+H+K I, (35) 

A+3 = 2(cr3/cr3/2)HKIE±HE+KE±H+K], 

tan ~H = -SH/CH, (25) in which 
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<r31<r~ 12 =(j=~ Ifml If:el Ifj,-tliKI) 

x ~-,~-K ~2 Ifj.-~,-,~l 2 (36) 
j=l  

For normal scattering by hypothetical structures of, 
respectively, unequal or equal point atoms at rest in 
space groups P1 and P1, the value of (o'3/o'23/2)u ~ 
reduces to the commonly used approximations 

~3/~32/2 = ~ ~- N -1/2. (37) 
j=l  =1 

The distribution (34) is unimodal and symmetrical 
about its mean (Oi) = (Ai); its variance ( (g~i-  (g~i)) 2) 
decreases with increasing Ai; and, from ( f ( x ) )=  
f~_~ f(x)P(x)dx,  it gives the conditional expectation 
values 

(cos ~i) = (cos A i) 11 (A31Io(a3 (38) 

and 

(s in  Iffi) = ( s in  Z~i) I 1 ( A i ) / l o ( A i )  , (39) 

where 11 is the first-order modified Bessel function. 
Equation (34) represents a perturbation approxima- 

tion to the rigorously formulated, but very complicated, 
conditional distribution of the SAS three-phase invar- 
iants ~Pi,rn~ given the six associated magnitudes IEnl, 
lEvel, IE_r~_KI, IE_r~l, IE_KI and IEr~+KI (Hauptman, 
1982). Although the rigorous results have general 
validity, the formulae are too complicated to provide 
physical insight. The approximate results, on the other 
hand, provide a clear phenomenological picture but the 
range of their applicability remains to be determined 
and is a subject of our continuing research. 

APPENDIX C 
A SAS per turbed tangent formula 

From (6), we consider the subset of SAS perturbed 
three-phase invariants 

g'0 = ~ + ~¢  + ~o_,,_K = g,0 + za0 (40) 

with a fixed H and a range of different K. According to 
the empirical statistical evidence, these invariants 
follow the probability distribution (34), which is 
unimodal and symmetrical about its mean (~Po) = (A0) 
so that a shift to a new phase origin at (A0) makes the 
distribution function for 

9a + 9K + 9_n_K -- (Ao) = ~p0 + Ao -- (Ao) (41) 

an even function. For the fixed H subset of invariants, 
we may write 

qgI. I _ ~po _ ,40 + (Ao)It = (Ao) n _ ~OK - ~0_U_K, (42) 

where 

(Ao)H = --(~u + ~K + ~-I-I-10n/2 > 0 (43) 

is the subset averaged SAS perturbation, which will be a 
good approximation to the global average (Ao) if the 
fixed H subset is sufficiently large. From (42), we have 

sin(gn - ~po _ Ao + (Ao)it) 

= sin((Ao)n -- ~ -- 9-n-K)  

cos(g~a -- ap ° -- A o + (Ao)rI) 

= COS((A0) H -- ~0 K -- ~0_H_K ) 

and, using 

sin(A + B) = sinA cosB + cosA sinB 

cos(A + B) = cos A cos B - sin A sin B, 

we average over the fixed H subset to obtain 

sin 9n ~ Wn~ cos0p ° + A o -  (Ao)n) 
K 

- cos qgri ~ WUK sin0p ° + Ao -- (Ao)n) 
K 

= ~ WnK sin((Ao)u -- 9I~ -- ~0-rl-K), (44) 
K 

cos 9n ~ WriK cos(7~ ° + A o - (Zao)n) 

+ sin 9n ~ wn~ sin(~ ° + Ao -- (Ao)u) 
K 

= ~ wire c o s ( ( A 0 ) n -  ~oK -- ~o_ri_K), (45) 
K 

where the waI< are weighting factors for which 
Wru< = Au~ is a reasonable choice. Owing to the origin 
shift to (A0) n, the average of the sine terms with the 
origin-shifted arguments ( ~ o +  ,4 ° _ (Zao)n) vanish in 
the left-hand sides of (44) and (45), i.e. 

( ~ K ) - 1  wuK ~ WriK sin0p ° + A0 -- (Zlo)n) = 0 (46) 
K 

for a statistically large set of fixed H triples. The ratio 
of (44) to (45) then gives the SAS perturbed tangent 
formula, 

AHK sin((Ao)n -- ~o K - qg_H_K ) 
= K . (47) 

tan q9 n ~ AHK COS((A0)H -- ~ -- @ - n - K )  
K 

If anomalous scattering is negligible, then (Ao) H = 0 
and (47) reduces to the conventional tangent formula. A 
general six-magnitudes SAS tangent formula corre- 
sponding to the six-magnitudes SAS distribution of 
Hauptman (1982) has been formulated by Hauptman 
(1996). 
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